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Energy Profile Fluctuations in Dissipative
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The exact large deviation function (ldf) for the fluctuations of the energy density
field is computed for a chain of Ising (or more generally Potts) spins driven by
a zero-temperature (dissipative) Glauber dynamics and sustained in a nontrivial
stationary regime by an arbitrary energy injection mechanism at the boundary of
the system. It is found that this ldf is independent of the dynamical details of the
energy injection, and that the energy fluctuations, unlike conservative systems in
a nonequilibrium state, are not spatially correlated in the stationary regime.
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1. INTRODUCTION

In a series of recent papers, Derrida et al.(1) studied the nonequilibrium
stationary states of exactly solvable models characterized by conservative
inner dynamics: particles diffuse in a one dimensional chain of sites without
annihilation, and are described at the hydrodynamical length- and time-
scales by a Fick’s (diffusion) law (with or without a systematic drift force).
The authors succeeded in exactly computing the nonequilibrium free energy
(associated with a given density profile) which displayed very interesting
features: for instance, the nonequilibrium situation induces long range cor-
relations which make the free energy nonadditive. The authors discovered
however an elegant and quite unusual sub-additivity principle whose gener-
ality for other models is still an open question. Their results also showed
that although the second moment of density fluctuations is the same as
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previously found with fluctuating hydrodynamics arguments,(2) a quadratic
(gaussian) approximation is not sufficient for higher cumulants.

In this paper, we address the same question of characterizing of non-
equilibrium stationary states (NESS), but for dissipative inner dynamics.
Such situations are widely encountered: for instance, the granular matter
continuously shaked by a piston can be considered for long time scales as
being in a NESS; the velocity field of a turbulent flow is also subjected to
a dissipative (Navier–Stokes) equation and can be sustained in a station-
ary state as well. These dissipative systems are altogether different from
conservative ones, since no concept of thermodynamical equilibrium can
be applied to them: in absence of energy input, the full rest is the ultimate
state of the system; as a result, no pertubative strategy can be deployed to
describe their physics, and in fact the nonequilibrium stationary states of
dissipative systems are not well known (see for instance(3,4) and references
therein).

In particular, at the light of the recent works aforementioned, natural
questions arise for dissipative NESS: are they similarly characterized by a
high level of correlation? are the fluctuations to some extent insensitive to
the details of the inner dynamics and/or the injection mechanism? is the
notion of nonequilibrium “thermodynamical potential” even relevant?

To answer these questions, and to develop further the ideas presented
in refs. 5,6 we consider here a one-dimensional dissipative model for which
some exact results on the energy structuration can be extracted: our model
is a semi-infinite 1D chain of Ising spins (easily generalized to a Potts
model) subjected to zero-temperature Glauber dynamics. These intrinsi-
cally dissipative dynamics are supplemented with an arbitrary (Poissonian
to be simple) flipping process of the first spin as a way to inject energy
into the system.

Our results can be summarized as follows: (i) the concept of nonequi-
librium potential can be extended via a nonhomogeneous space coarsening
of this dissipative system; (ii) this potential is independent of the nature of
the injection mechanism, and reflects mainly the dynamical inner self orga-
nization of the system; (iii) this potential does not display correlations, i.e.
it is “additive”, as soon as a stretching of the space is taken into account;
(iv) such a potential cannot be defined for any dissipative system, and the
conditions that system dynamics must fulfill to have a global observable
obeying the large deviation theorem are not clear.

The paper is organized as follows. In a first part we define the model
and its dynamics; then we give some preliminary results concerning the
stationary state and introduce the cumulative energy E. Afterwards we
compute the large deviation function of (ldf) E and the ldf associated with
an energy profile. We end up with a discussion of the results.
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2. DEFINITION OF THE MODEL

The model we consider is a one-dimensional semi-infinite chain of Ising
spins σ0, σ1, . . . , σj , . . . (a finite chain could be considered as well). The
spins follow zero-temperature Glauber dynamics, except for the spin σ0,
which flips according to a Poisson process of parameter λ : the probabil-
ity associated with a flip of spin j from a configuration C between t and
t + dt is w(C → Cj )dt = [1 − σj (σj+1 + σj−1)/2] × dt if j �= 0 (the starting
configuration is termed C and the j -flipped configuration Cj ) and λdt for
σ0. As a result, the master equation describing dynamics in the model is

∂tP (C)=−
∑

j�0

w(C →Cj )P (C)+
∑

j�0

w(Cj →C)P (Cj ) (1)

=−λ[P(C)−P(C0)]−
∑

j�1

[1−σj (σj+1 +σj−1)/2]P(C)

+
∑

j�1

[1+σj (σj+1 +σj−1)/2]P(Cj ) (2)

In the last equality, the spin values refer obviously to configuration C.
Inner Glauber dynamics are essentially dissipative: the domain walls

(which are elementary energy excitations) move randomly and annihilate
by pairs when colliding. Thus, in absence of energy input, any initial con-
dition would eventually relax to a state characterized by the same value
of all spins; in the model considered here, such an external input is pro-
vided by the Poissonian motion of the spin labeled 0, which gives energy
to the system when σ0 flips from σ1 to −σ1. As a result, after a transient,
a stationary state takes place which is described in the following.2

3. THE STATIONARY STATE

3.1. Mean Injected Power

If the summation
∑

C σ0σi(. . . ) is made on the dynamical Eq. (1), one
gets

∂t 〈σ0σi〉=−2(λ+1)〈σ0σi〉+〈σ0σi+1〉+〈σ0σi−1〉 (3)

When the stationary state is assumed, and according to σ 2
0 = 1, (3) leads

to 〈σ0σi〉= [1+λ−
√

λ2 +2λ]i (this correlation vanishes when i →∞).

2we are aware that the stationary state of the infinite system needs in general a diverging
time to be established, but this problem can be circumvented by a clever choice of the initial
conditions.
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From this calculation an interesting physical result can be deduced:
the (mean) power Pinj injected by the spin 0 inside the system is related to
〈σ0σ1〉, since between t and t + dt , the energy ceded is in average 2λdt ×
[Prob(σ0 =σ1)−Prob(σ0 =−σ1)], whence(7)

Pinj =2λ〈σ0σ1〉 (4)

=2λ
(
1+λ−

√
λ2 +2λ

)
(5)

The injected power is an increasing function of λ which saturates to 2 for
large λ; this value is physically dictated by internal dynamics, i.e. the abil-
ity of the system to diffuse into the bulk the energy excitations created
at the boundary. It is to note that there is thus no notion of “optimal”
time scale concerning the energy injection, which is not evident a priori:
one could imagine that an optimal waiting time could leave domain walls
move away from the boundary.

3.2. Two-points Correlations and Energy Density Profile

Another interesting quantity describing the stationary state is the
average energy density profile

〈en〉=1−〈σnσn+1〉 (6)

This quantity is more complicated to obtain. To this end, it is useful to
interpret Glauber dynamics as coalescing paths dynamics:(8) the update
of any spin is equivalent to a random choice (Poissonian with parame-
ter 1) of the spin value among one of its two neighbours, such that the
value σn(t) can be traced back in time from spin to spin until either the
time origin or the boundary σ0 is reached at a certain spin index or time
(respectively). If the stationary state is studied, the notion of time origin
is irrelevant, and any “path of constant spin value” eventually reaches the
zeroth spin (see Fig. 1). If two spins σn and σp are now monitored, two
paths emerge from n and p, are traced back in time, and possibly coa-
lesce if they meet each other before reaching the boundary. They are sta-
tistically independent, since the flipping processes in two distinct sites are
not correlated. As a result, the average 〈σnσp〉 can be calculated as fol-
lows: consider two random walkers starting at sites n and p. If they meet
before touching the site 0, this occurence of the paths gives a factor 1 in
the computation of 〈σnσp〉. Otherwise, the n-path (resp. p) arrives at site
zero at time tn (resp. tp), and this occurence gives a factor 〈σ0(tn)σ0(tp)〉=
exp(−2λ|tn − tp|), where the average is on the Poissonian process σ0. As a
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Fig. 1. The value of σj (t) can be traced back in time from neighbouring spin to neighbouring
spin until it reaches σ0 whose statistical properties are known.

result original dynamics are mapped on dynamics of two random walkers
plus dynamics of σ0. These considerations can be summarized as

〈σnσp〉= cnp +
∫ ∞

0
dtn

∫ ∞

0
dtpProb[tn, tp and (n,p)] exp(−2λ|tn − tp|) (7)

In this expression, cnp is the probability that the walkers starting at n and
p meet each other before reaching the zeroth site (we will also use cn,p =
1 − cnp; generally, a comma is put between two indices when the associ-
ated walkers are supposed to avoid each other; conversely the absence of
comma holds for coalescing walkers); besides Prob[tn, tp and (n,p)] is the
probability that the n-walker and the p-walker reach site 0 at times tn and
tp respectively without having met each other beforehand.

These expressions can be exactly computed. Indeed, consider two
independent random walkers starting at n and p. There are a priori three
possible situations (Fig. 2): either (i) they do not cross at all, or (ii)
they cross and “exchange” their arrival time, or (iii) they cross without
exchanging their arrival time. It is easy to see that each situation of type
(ii) can be mapped to a situation of the type (iii), and vice-versa (Fig. 3).
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(i) (ii) (iii)
Fig. 2. Three possible generic situations for two independent walkers.

Moreover, the probability is of course conserved by the mapping, since the
two paths are of the same statistical nature. As a result, if n<p:

cn,p =
∑

type (i) and (iii) paths

Prob(path)−
∑

type (ii) paths

Prob(path) (8)

=
∫ ∞

0
dtn

∫ ∞

tn

dtp[Pn(tn)Pp(tp)−Pn(tp)Pp(tn)] (9)

cnp =2
∫

tn<tp

Pn(tp)Pp(tn) (10)

where Pn(τ) is the probability (density) for a walker initially (t = 0) at n

to reach the site 0 for the first time at t = τ . We get, for n�p:

〈σnσp〉=2
∫ ∞

0
dt

∫ ∞

t

dt ′Pn(t
′)Pp(t)+

∫ ∞

0
dt

∫ ∞

t

dt ′[Pn(t)Pp(t ′)

−Pn(t
′)Pp(t)] exp(−2λ|t − t ′|) (11)

We are going to see that the dominant contribution to 〈σnσp〉 in the limit
n → ∞ is given by the first term only. This fact has important conse-
quences on the structure of the stationary regime.

The probability Pn(t) is obtained as a solution of a Brownian motion
with an absorbing boundary at site 0: the probability p(m, t |n) that a
Brownian walker starting at site n at t = 0 be at site m at time t without
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Fig. 3. Mapping of type (ii) to type (iii) paths.

having touched the zeroth site obeys the dynamical equation ∂tp(m|n) =
p(m+1|n)+p(m−1|n)−2p(m|n) if m>1 and ∂tp(1|n)=p(2|n)−2p(1|n).
The probability density Pn(t) is simply given by Pn(t)=p(1, t |n) (actually
Pn(t) is p(1, t |n) times the transition rate associated to the jump 1→0, but
this rate were chosen equal to one). That p(m, t |n)=pf (m−n, t)−pf (m+
n, t) (with pf is the free-boundary Brownian motion starting at site 0) is
the solution is directly verified, whence one gets

Pn(t)=2
∫ 1

0
dq e−4t sin2 πq sin(2πq) sin(2πqn) (12)

With this expression, one can recast cnp in

cnp =4
∫ 1/2

0
dq cot(πq) sin(2πqn)

(
2 sin2 πq +1−2

√
sin4 πq + sin2 πq

)p

(13)
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An asymptotic expansion leads to the following result, valid for n→∞,
p >n:

cnp � 4
π

Atan
(

n

p

)
(14)

The second term of (11) can be estimated using the asymptotic
behaviour of Pn:

Pn(nτ) �
n→∞

1√
2πn

1
τ(4τ 2 +1)1/4

× expn

(√
4τ 2 +1−2τ − log

[
1

2τ
+
√

1
4τ 2

+1

])
(15)

�
τ	1

1√
4πnτ 3

exp
(
− n

4τ

)
(16)

A cumbersome computation yields for n→∞ and p >n:

∫ ∞

0
dt

∫ ∞

t

dt ′ [Pn(t)Pp(t ′)−Pn(t
′)Pp(t)] exp(−2λ|t − t ′|)� 24

πλ2

np(p2 −n2)

(n2 +p2)4

(17)

It is important to remark that in the asymptotic limit n→∞, the domi-
nant contribution to 〈σnσp〉 is given by the “coalescing term” cnp, which
is independent of the value of λ; moreover the dominant contribution is
(besides the constant 1) nonsummable and leads to a logarithmic diver-
gence, whereas the λ-dependent corrections are of order 1/n5 (for n−p=
O(1)) and therefore obviously summable.

These results can be applied to the energy density profile:

〈en〉� 2
πn

+O

(
1
n5

)
(18)

Once again the leading term of the energy density profile is independent
of λ and nonsummable.
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3.3. Energy Density Correlations

Once we have the averaged profile 〈en〉, it is natural to subsequently
ask for the correlation function of en:

〈enep〉−〈en〉〈ep〉=〈σnσn+1σpσp+1〉−〈σnσn+1〉〈σpσp+1〉 (19)

The 4-point correlator 〈σnσn+1σpσp+1〉 can be written 〈σnσn+1σpσp+1〉 =
cnn+1pp+1 + cnn+1,pp+1 + χ(n,p) where cnn+1pp+1 is the probability that
four walkers starting at n, n + 1, p and p + 1 coalesce before reach-
ing the boundary; cnn+1,pp+1 (note the comma) the probability that the
walkers “n” and “n + 1” on one side, walkers “p” and “p + 1” on the
other side coalesce and that the two groups reach the boundary sep-
aratly; and χ(n,p) is the term arising from situations where one or
several walkers reach the boundary without coalescence. This χ(n,p) is
obviously λ-dependent and is composed of several terms, each corre-
sponding to a particular scenario for the walkers: with natural notations,
{n,n+1, p,p+1}, {(n n+1 p),p+1}, {n, (n+1 p p+1)}, {(n n+1),p,p+1},
{n, (n+1 p),p+1}, {n,n+1, (p p+1)} are the different possible situations
where λ plays a role. Let us consider the first term:

{n,n+1, p,p +1} =
∫

t1<t2<t3<t4

Prob[t1, t2, t3, t4 and (n, n+1, p,p +1)]

×〈σ0(t1)σ0(t2)σ0(t3)σ0(t4)〉 (20)

(the probability term refers to four walkers starting from the four sites
considered and reaching without coalescence the site 0 at times t1 · · · t4
respectively). This integral must be approximately evaluated; its dominant
term comes from regions in the (t1, t2, t3, t4) plane where t1 � t2 and t3 � t4:
in these regions only is the 4-point correlator in σ0 significantly different
from zero. As a result,

{n,n+1, p,p +1}∼λ−2
∫

t1<t2

Prob[t1, t1 +λ−1, t2, t2 +λ−1

and (n, n+1, p,p +1)] (21)

� λ−1
∫

t1

Prob[t1, t1 +λ−1 and (n, n+1)]

×λ−1
∫

t2

Prob[t2, t2 +λ−1 and (p,p +1)] (22)
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But as

λ−1
∫ ∞

0
dt Prob[t, t +λ−1 and (n, n+1)]

∼λ−1
∫

dtPn(t)Pn+1(t +λ−1)−Pn(t +λ−1)Pn+1(t) (23)

∼λ−2
∫ ∞

0
dtPn(t)

2
(

Pn+1(t)

Pn(t)

)′
∼ λ−2

n5 (24)

we conclude that {n,n+1, p,p+1} gives a very rapidly decreasing contribu-
tion, and we can notice besides that

∑
n<p{n,n+1, p,p+1}<∞. The sit-

uation is similar if other λ-dependent terms are considered. For instance,

{(n n+1 p),p+1}∼λ−1
∫ ∞

0
dtProb[t, t +λ−1 and ((n n+1 p),p+1)]

(25)

�λ−1
∫ ∞

0
dtProb[t, t +λ−1 and (n,p+1)]

∼λ−2pn
p2 −n2

(p2 +n2)4
(26)

(note the similarity between this approximation and the exact limit of
(17)). Once again this term is very small and verifies

∑
n<p{(n n+1 p),

p+1}<∞.
A special attention must be paid to the term {n,n+1, (p p+1)}.

Actually it is not summable:
∑

n<p<N {n,n+1, (p p+1)} diverges with a
contribution O(N) and another O(log N). But this term is partially “dis-
connected” and these divergences are exactly balanced in (19) by a term
coming from 〈σnσn+1〉〈σpσp+1〉= (cnn+1 +{n,n+1})(cpp+1 +{p,p+1}): actu-
ally {n,n+1}cpp+1 is the counterterm which kills these “hybrid” diver-
gences.

So, the correlation function of the energy can be recast as

〈enep〉−〈en〉〈ep〉= cnn+1pp+1 + cnn+1,pp+1 −1+ cn,n+1 + cp,p+1

− cn,n+1cp,p+1 + χ̃(n,p) (27)

where χ̃(n,p) depends on λ and verifies
∑

n<p χ̃(n,p)<∞. We will see in
the following that

cnn+1pp+1 + cnn+1,pp+1 =1− cn,p+1 + cn,p + cn+1,p+1 − cn,n+1 − cn+1,p − cp,p+1

+ cn,n+1cp,p+1 + cn,p+1cn+1,p − cn,pcn+1,p+1 (28)
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whence finally

〈enep〉−〈en〉〈ep〉=−cn,p+1 + cn,p + cn+1,p+1 − cn+1,p + cn,p+1cn+1,p

− cn,pcn+1,p+1 + χ̃(n,p) (29)

Local correlations are then easily deduced from (14):

〈enen+k〉−〈en〉〈en+k〉 �
n large, k→∞

−32n(n+1)(2n+1)

3π2

1
k5 (30)

〈enenk〉−〈en〉〈enk〉 �
n large, k→∞

−32(n+1)(2n+1)

3π2

1
n4k5

(31)

and 〈e2
n〉 − 〈en〉2 � 4/(πn). Thus, the energy distribution has anticorrela-

tions which decrease with the distance. The second scaling is clearly much
more relevant to describe the system, a fact that will become clearer in the
following.

3.4. The Cumulative Energy E

It has been seen that the local structure of the stationary energy field
is of course affected by the injection mechanism. Nevertheless the pre-
ceding preliminary computations highlighted a very important “boundary
layer” phenomenon. To precise this, let us define the cumulative energy E:

E =
N−1∑

n=0

(1−σnσn+1) (32)

which is nothing but the energy of the N first spins. The average of E and
its fluctuations share the same following properties:

• they are O(log N) when N →∞
• their leading term is independent of the injection mechanism.

To see this, let us remind first that 〈E〉 ∼ 2
π

log N (from Eq. (18)). As to
the fluctuations, the preceding section allows to write



384 Farago

�E2 ≡〈E2〉−〈E〉2 (33)

∼
N→∞

2
∑

0�n<p<N

[−cn,p+1 + cn,p + cn+1,p+1 − cn+1,p

+ cn,p+1cn+1,p − cn,pcn+1,p+1

]
+
∑

0�n<N

[〈e2
n〉−〈en〉2] (34)

∼
N→∞

8
π

(
1− 2

π

)
log N (35)

The key point of this paper is to remark that these properties are actu-
ally shared by all cumulants of the distribution of E. We do not intend
to give a demonstration for this, but owing to the arguments presented in
the preceding subsection, this conjecture is reasonable: in an event of 2m

walkers starting from sites located asymptotically far from the boundary,
the probability associated with scenarios where one or several pairs of
walkers reach the boundary is either negligible or cancelled out by the
cumulant structure of the mean.

From the physical point of view, this property reflects a boundary
layer structure: the injection mechanism provides energy into the system
which spreads out quite efficiently despite the dissipation mechanism; how-
ever the dissipation is strongly efficient near the boundary and smoothes
out the “memory” of the injection details. In other words the dissipation
sets up an autosimilarity regime for the energy, which is independent of
the amount transfered to the system.

From the analytical point of view, this property has two important
consequences. First, we shall see that there is a ldf f associated with E,
namely

∃ f, lim
N→∞

log P(E/ log N = ζ )

log N
=f (ζ ) (36)

and secondly this ldf is independent of the injection mechanism, for the
cumulants of E are directly related to the Taylor expansion coefficients
of f . As already noticed,(5,9) here again the ldf captures the essential fea-
tures of an observable and fades away some “irrelevant” details: the sum-
mation process tends to “universalize” the different possible behaviours in
some way. Moreover, this property allows the analytical computation of
f (ζ ), which is the subject of the subsequent section.
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4. THE LARGE DEVIATION FUNCTION OF E

As f does not depend on the injection mechanism, we will consider
henceforth the limit λ→∞ (extremely quick flipping of σ0). To get f , we
will compute first the characteristic function G(µ)=〈exp(−µE)〉, which is
the Laplace transform of the probability P(E); we will show that G(µ) is
dominated by a term exp[g(µ) log N ]. Once g is known, the Laplace inver-
sion formula shows that f (ζ ) is given by a Legendre transformation:

f (ζ )=max
µ

(g(µ)+µζ) (37)

provided that no analyticity breaking of the prefactors of the exponentials
in G occurs at the saddle point in the µ space (see ref. 5 for instance). We
will assume in the following that no such problem arises, which is the most
often case.

Using a classical trick of Ising spin systems and defining τ =
(exp(−2µ)−1)/2, one can write G as

G(µ)=
〈

N−1∏

i=0

e−µ(1−σiσi+1)

〉
=
〈

N−1∏

i=0

[1+ τ(1−σiσi+1)]

〉
(38)

=1+ τ
∑

i

〈1−σiσi+1〉+ τ 2
∑

i<j

〈(1−σiσi+1)(1−σjσj+1)〉+ τ 3 . . .

(39)

≡1+ τS1 + τ 2S2 + τ 3S3 + . . . (40)

In the limit λ → ∞, all the averages in the preceding sum can be inter-
preted as probabilities related to walkers. For instance, 〈1−σiσi+1〉 is just
the probability ci,i+1 that two walkers emerging from i and i + 1 do not
meet before reaching the site 0; similarly 〈(1−σiσi+1)(1−σjσj+1)〉 is (for
i �= j ) the probability that during the wandering of four walkers emerging
from sites labeled i, i +1, j , j +1, walkers i and i +1 from one side and
walkers j and j +1 from the other side have not collapsed (this interpre-
tation is also valid if i + 1 = j ). We will denote this probability pI,J in
the following. We will see that the probabilities pI,J,K,... and therefore the
terms Si can be expressed in terms of the ci,j only.

4.1. The First Terms

The term S1 is simply S1 =∑i ci,i+1, where the summation ranges
from i =0 to i =N −1. The term S2 can also be expressed in terms of the
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ci,j . To this end, let us consider pI,J . The event (I, J ), which is “walkers i

and i +1 do not collapse, as well as walkers j and j +1” is equivalent to
the event “(i, i +1, j, j +1) or (i, (i +1j), j +1)”, such that (remind that a
comma holds for “have not met” whereas an absence of comma for “have
met”)

pI,J = ci,i+1,j,j+1 + ci,i+1j,j+1 (41)

This probability can be transformed slightly. We have the important rela-
tions (actually generalizable to any situation)

ci,jk,	 + ci,j,k	 + ci,j,k,	 = ci,j,	

ci,j,k	 + ci,j,k,	 = ci,j,k (42)

which are valid whatever i �j �k�	 (essentially they express the fact that
if one enumerates correctly what can happen to an emerging path – all
remaining paths being besides fixed – and sum the corresponding prob-
abilities, one gets the probability of the event whence that path is elimi-
nated). They show how to express c... where some indices “stick” together,
in terms of c... with no sticking.

This yields for pI,J and S2:

pI,J = ci,i+1,j,j+1 + ci,i+1,j+1 − ci,i+1,j (43)

S2 =
∑

i<j

ci,i+1,j,j+1 +
∑

i

ci,i+1,N (44)

The complexity of the terms increases very fast with the number of indices:

pI,J,K = ci,i+1,j,j+1,k,k+1 + ci,i+1j,j+1,k,k+1 + ci,i+1,j,j+1k,k+1 + ci,i+1j,j+1k,k+1 (45)

S3 =
∑

i<j

ci,i+1,j,j+1 +
∑

i<j<k

ci,i+1,j,j+1,k,k+1 +
∑

i<j

ci,i+1,j,j+1,N (46)

(the sum S3 is obtained after a quite lengthy computation!). The next
order requires some patience, and one gets

S4 =
∑

i<j<k<	

ci,i+1,j,j+1,k,k+1,	,	+1 +2
∑

i<j<k

ci,i+1,j,j+1,k,k+1

+
∑

i<j<k

ci,i+1,j,j+1,k,k+1,N +
∑

i<j<k

ci,i+1,j,j+1,N (47)
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No evident regularity emerges from these first terms. It is worth noting
that a rewriting of these terms is possible, since it is possible to write a
term c... with odd number of indices as a sum of c... with even number of
indices, but this rewriting makes the situation all but more transparent.

4.2. Resummation of G

A resummation of G(µ) is nevertheless possible. To do this, it is con-
venient to introduce a schematic representation of the terms appearing in
the Sj . With evident definitions, we introduce the notations C(j) and C

(j)
N :

S1 =C(1) (48)

S2 =C(2) +C
(1)
N (49)

S3 =C(3) +C(2) +C
(2)
N (50)

S4 =C(4) +2C(3) +C
(3)
N +C

(2)
N (51)

We will show that a recursion relation exists between Sn+2, Sn+1 and Sn.
The starting point is, besides the remark that Sn is a sum of terms C(j)

and C
(j)
N , the following relation, obtained along similar lines as Eq. (42):

pI,J,K =pI,J and j+1,k,k+1 +pI,J and j+1k,k+1 (52)

=pI,J and j+1,k+1 −pI,J and j+1,k +pI,J and j+1,k,k+1 (53)

In this relation, pI,J and j+1,k terms the probability that i and i +1, j and
j + 1, j + 1 and k do not meet pair by pair. The other terms have simi-
lar definitions. Moreover, we particularize the recursion relation on pI,J,K ,
but it is evident that a such relation is also true if some capital indices are
implied at the left of I : this relation is true at any order actually. As a
result,

∑

i<j<k

pI,J,K =
∑

i<j

pI,J and j+1,N +
∑

i<j<k

pI,J and j+1,k,k+1 (54)

Naively, we are tempted to deduce from this relation the formal law to
pass from Sn to Sn+1: “put an extra N on one side, increment the rank
on an other, and add”. This rule is in fact not simple to implement for
a recursion, since one does not know a priori how to interpret terms like
(C

(n)
N )N and (C

(n)
N )n→n+1. Let us see how to do this. Again, we examplify

the demonstration on a certain rank, but it is obviously valid for any.
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We have

S2 =
∑

i<j

pI,J (55)

S3 =
∑

i<j<k

[pI,J and j+1,k+1 −pI,J and j+1,k]+pI,J and j+1,k,k+1 (56)

So, the passage from Sn to Sn+1 is obtained by the formal linear operator:
L= (. . . )k+1 − (. . . )k + (. . . )k,k+1. Let us write now S2 in terms of C(2) and
C

(1)
N :

S2 =
∑

i<j

[
pI and i+1,j+1 −pI and i+1,j

]+
∑

i<j

pI and i+1,j,j+1 (57)

The question now is: can we apply the operator L term by term to the
Eq. (57)? We have

L[pI and i+1,j+1]=pI and i+1,j+1,k+1 −pI and i+1,j+1,k

+pI and i+1,j+1,k,k+1 (58)

L[pI and i+1,j ]=pI and i+1,j,k+1 −pI and i+1,j,k

+pI and i+1,j,k,k+1 (59)

L[pI and i+1,j,j+1]=pI and i+1,j,j+1,k+1 −pI and i+1,j,j+1,k

+pI and i+1,j,j+1,k,k+1 (60)

On the other hand, the generic term of S3 (cf. Eq. (56)) can be
expanded “inside” using the relations:

pI,J and j+1,k+1 =pI and i+1,j,j+1,k+1 +pI and i+1j,j+1,k+1 (61)

=pI and i+1,j,j+1 −pI and i+1,j,k+1 +pI and i+1,j+1,k+1
(62)

pI,J and j+1,k =pI and i+1,j,j+1 −pI and i+1,j,k +pI and i+1,j+1,k (63)

pI,J and j+1,k,k+1 =pI and i+1,j,j+1,k+1 −pI and i+1,j,j+1,k

+pI and i+1,j+1,k,k+1 −pI and i+1,j,k,k+1

+pI and i+1,j,j+1,k,k+1 (64)

A rapid inspection shows that application of L term by term in 57 gives
the correct result. Moreover, one sees that L[C(1)

N ] = C(2) and L[C(2)] =
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C(3) +C
(2)
N and similar relations hold at any order:

L
[
C

(n)
N

]
=C(n+1) (65)

L
[
C(n)

]
=C(n+1) +C

(n)
N (66)

A couple of polynomials (Pn,Qn) can be associated to Sn: Pn represents
the C terms and Qn the CN terms, with the mapping C(m) ↔Xm. Thus,

(P1,Q1)= (X,0) (67)

(P2,Q2)= (X2,X) (68)

(P3,Q3)= (X3 +X2,X2) (69)

. . . (70)

(Pn+1,Qn+1)= (XPn +XQn,Pn) (71)

whence Pn+1 =XPn +XPn−1. Symbolically, this recursion can be solved for
Pn, owing to P1 =X,P2 =X2:

Pn = X√
X2 +4X

[(
X +

√
X2 +4X

2

)n

−
(

X −
√

X2 +4X

2

)n]
(72)

Qn is simply deduced from the formula Qn =Pn−1. Symbolically, it yields

∞∑

n=1

Pnτ
n = Xτ

1−X(τ + τ 2)
(73)

= 1
1+ τ

∞∑

n=1

(τ + τ 2)nXn (74)

and

∞∑

n=1

Qnτ
n = τ

1+ τ

∞∑

n=1

(τ + τ 2)nXn (75)
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From these results is derived a rewriting of G(µ):

G(µ)=1+ 1
1+ τ

∞∑

n=1

(τ + τ 2)nC(n) + τ

1+ τ

∞∑

n=1

(τ + τ 2)nC
(n)
N (76)

=1+ 1
τ +1



(τ + τ 2)
∑

i

ci,i+1 + (τ + τ 2)2
∑

i<j

ci,i+1,j,j+1 +· · ·




+ τ

τ +1



(τ + τ 2)
∑

i

ci,i+1,N + (τ + τ 2)2
∑

i<j

ci,i+1,j,j+1,N +· · ·




(77)

The second sum can be slightly transformed : it can be shown (see Appen-
dix A) that

ci1,i1+1,i2,i2+1,... ,in,in+1,N = ci1,i1+1,i2,i2+1,... ,in,in+1 − ci1,i1+1,i2,i2+1,... ,in,N +· · ·
− ci1,i2,i2+1,... ,in+1,N + ci1+1,i2,i2+1,... ,in,in+1,N

(78)

whence

C
(n)
N =

∑

0�i1<i2<...<in

ci1,i1+1,i2,i2+1,... ,in,in+1 −
∑

0<i2<...<in

c0,i2,i2+1,... ,in,in+1,N

=C(n) −C
(n−1)
N +

∑

i3<...<in

c1,i3,... ,in,in+1,N (79)

(otherwise explicitely stated, let us recall that the sums start at site 0).
Whence

∞∑

n=1

(τ + τ 2)nC
(n)
N =− τ + τ 2

1+ τ + τ 2
+ 1

1+ τ + τ 2

∑

n�1

(τ + τ 2)nC(n)

+ (τ + τ 2)2

1+ τ + τ 2

∑

n�0

(τ + τ 2)nC1(n)N (80)

where

C1(n)N =
∑

0<i1<i2<...<in

c1,i1,i1+1,i2,i2+1,... ,in,in+1,N (81)
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As a result, one has

G(µ)= 1+ τ

1+ τ + τ 2



1+
∑

n�1

(τ + τ 2)nC(n) + τ 3
∑

n�0

(τ + τ 2)nC1(n)N



 (82)

This rewriting is fruitful, since the sums are directly related to the Pfaffian
theory: as explained in the Appendix A, we can write

G(µ)= 1+ τ

1+ τ + τ 2

√
det[1+A(η, η′)C] with (83)

η=−τ − τ 2 (84)

η′ = τ 2

1+ τ
(85)

(the definitions of A and C are given in the Appendix A).

4.3. Asymptotic Behaviour of G

In ref. 8, the authors showed that the leading term of log det[1 +
A(η, η′)C] remains unchanged if we put η′ =0. In fact, in their case, a diffi-
culty arises, due to the fact that the subdominant term (where η′ appears)
diverges in a certain range of parameters and provides an analytic contin-
uation of the persistence exponent. Here, the computation of the subdom-
inant term cannot be performed exactly because the matrix AC does not
have an exact continuous limit, but we think that it is precisely this fact
that prevents the subdominant term to interfere in the analytic properties
of the ldf. Anyway, we did not find any analytical problem in the ldf (see
below), and interpreted this as a “gentle” behaviour of the subdominant
term. In the following the replacement η′ =0 is implicitely made.

Using log det(M)=Tr log(M), we get

log G(µ)∼−1
2

∞∑

p=1

(−1)p

p
Tr
[
(A(η,0)C)p

]
(86)

From the expressions of A and C, we have:

Tr[(A(η,0)C)p] ∼
N→∞

(
8
π

(τ + τ 2)

)p ∑

1�i1,... ,ip�N

i1i2 · · · ip
(i2

1 + i2
2 )(i2

2 + i2
3 ) · · · (i2

p + i2
1 )

(87)
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We get this first expression by assuming that the leading term is obtained
when all indices are large (cf. ref. 8 and see below). We assume temporar-
ily that this term is O(log N); thus we have necessarily for any a >1

∑

i1,... ,ip�N

i1i2 · · · ip
(i2

1 + i2
2 )(i2

2 + i2
3 ) · · · (i2

p + i2
1 )

∼ log N

log a

∑

N�i1,... ,ip�Na

i1i2 · · · ip
(i2

1 + i2
2 )(i2

2 + i2
3 ) · · · (i2

p + i2
1 )

(88)

∼ log N

log a

∫ log a

0

du1 · · ·dup

(1+ e2(u2−u1))(1+ e2(u3−u2)) · · · (1+ e2(u1−up))
(89)

Let us now consider the large a limit in the integral and perform the
change of variable v1 =u1, v2 =u2 −u1, . . . vp =up −up−1 (its Jacobian is
1). Defining s(x)= e−x/(1+ e−2x)=1/2 cosh(x), we have

∫ log a

0

du1 · · ·dup

(1+ e2(u2−u1)) · · · (1+ e2(u1−up))

=
∫ ∞

−∞
dy

∫ log a

0
dv1

∫
dv2 · · ·dvpδ(v2+· · ·+vp −y)s(v2) · · · s(vp)s(y)

(90)

∼
a→∞ log a ×

∫ ∞

−∞
dk

2π

[∫ ∞

−∞
dveikvs(v)

]p

(91)

Before proceeding further, let us show that this term can be expressed
differently, which will make the log N dependence explicit:

∑

i1,...ip�N

i1i2 . . . ip

(i2
1 + i2

2 )(i2
2 + i2

3 ) . . . (i2
p + i2

1 )

∼p

N∑

ip=1

1

i
p
p

∑

i1,...,ip−1�ip

(i1/ip) · · · (ip−1/ip)

((i1/ip)2 + (i2/ip)2) · · · ((i1/ip)2 +1)
(92)

∼p log(N)

∫ 1

0
dx1 · · ·dxp−1

x1 · · ·xp−1

(x2
1 +x2

2 ) · · · (x2
p−1 +1)(1+x2

1 )
(93)

(because the general term of the ip sum is asymptotically equivalent to the
integral times 1/ip). This expression is however not as useful as the pre-
ceding, for it leads to an expression involving a solution of a Wiener–Hopf
problem.
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Coming back to G(µ), Eq. (91) and ref. 8 yield

log G(µ)∼ log(N)×
∫ ∞

−∞
dk

4π
log
[

1+ 8
π

(τ + τ 2)

∫ ∞

−∞
dv eikvs(v)

]
(94)

⇒g(µ)= 1
8

−
[√

2
π

Arccos

(
e−2µ

√
2

)]2

(95)

We verify that g(0) = 0, −g′(0) = 〈E/ log N〉 = 2/π and g′′(0) =
8
π2 (π − 2) = (〈E2〉 − 〈E〉2)/ log N , as it must be. The third derivative of g

is 64(3 − π)/π2 on zero. In the Fig. 4, the aspect of f (ζ ) is shown and
its shape is compared with a parabola. The fluctuations above the mean
value are comparatively more probable than those below the mean value:
intuitively a positive fluctuation of E regresses by annihilation pair by pair
of the (excess) domain walls, and can be sustained as soon as the domain
walls avoid each other in their erratic motion; on the contrary, a impor-
tant negative fluctuation (i.e. E < 〈E〉) will recede by energy refilling from
the boundary, a process which is unavoidable if the population of domain

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

ζ

f(
ζ)

Fig. 4. The large deviation function f (ζ ) for the Ising model (solid line) and the best para-
bolic approximation −(ζ−2/π)2/(2g′′(0)) (dots). The ldf does not continue in the range ζ<0.
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walls is substantially lowered. This could explain qualitatively the counter-
clockwise tilt of the curve.

As regards the right asymptotics of f (ζ ), it is easily established (with
the formula 94 which is the analytic continuation of g(µ)) that f (ζ ) ∼
−(πζ/8)2; this explains the vaguely parabolic look of f .

Finally let us notice that the f (ζ ) stops abruptly at ζ = 0; this
means that the probability of observing an arbitrary small energy E

decreases like N−3/8 (up to a 1/
√

log N term); it illustrates the fact that
an important “clearance” of the system due to an efficient (in dissipation)
fluctuation is not particularly unlikely. In ref. 10 a same kind of ldf with
a nondiverging left branch was found in a very different context.

4.4. Generalization to (an)isotropic Potts Models

The above calculations can be extended without difficulty to a
q-states Potts model (driven by a “voter-model” dynamics: in [t, t + dt ],
each spin imitates its left/right neighbour with a probability dt and does
nothing with probability 1 − 2 dt) with an arbitrary input at σ0 (the only
requirement concerning this input is that it must be statistically stationary
and have a finite time scale; we call this arbitrariness “anisotropic” for the
different colours of the Potts model are not necessarily equiprobable). The
energy is now defined as ej =2(1−δσj ,σj+1) (we put the factor two to make
the Ising model equivalent to the q = 2 Potts). If P0(σ0) is the stationary
probability of the spin σ0, let us define

b=2×
(

1−
q∑

	=1

P0(	)
2

)
(96)

(b=1 in the Ising model; b=2 corresponds to a A+A→A model).
Actually, this generalization does not modify deeply the preceding

analysis: the reasoning on the coalescing walkers is unaffected by the mul-
tiplication of the “colours”, since either the walkers collapse, which implies
automatically that they “carried” the same colour (remind that the walk-
ers cannot be considered as domain walls or vice-versa), or they do not
collapse, and in that case their colours are statistically determined by the
σ0 process, which can be considered as before as an ultrafast process.

It is easily shown that 〈E〉∼ log(N)2b/π and similarly the function G

is obtained from the preceding by making the replacement τ →bτ :

g(µ)= 1
8

−
[√

2
π

Arccos

(
be−2µ +1−b√

2

)]2

(97)
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In the Fig. 5 were plotted the ldf for several values of b. To compare these
functions we normalized the coordinates, so that their maximum is located
at 2/π and their curvature at the maximum is −1. Once normalized, these
functions look very similar, and the physical informations are mainly con-
tained in the first two moments: we have 〈E〉/ log N ∼ 2b/π and (〈E2〉 −
〈E〉2)/ log N ∼4b[π +(π −4)b]/π2. As a result, irrespective of the details of
the injection, the anisotropic Potts models verify asymptotically the simple
relation

�E2

〈E〉 =
[
(π −4)

〈E〉
log N

+2
]

(98)

A natural question would be to know if such a relation can still be veri-
fied if intrinsic dynamics, although dissipative, is not equivalent to a voter
model.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

ζ/b

f(
ζ)

/[
b

2 f’’ (〈
ζ〉

)]

b=0.1
b=0.5
b=1
b=2

Fig. 5. Normalized ldf for different values of b for the anisotropic Potts models: The plots
are f (ζ )/[b2f ′′(〈ζ 〉)] as a function of ζ/b. The Ising model corresponds to b=1.
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5. NONEQUILIBRIUM “FREE ENERGY”

As it was possible to compute the ldf of E, we can ask whether a more
precise description of the fluctuations of the energy field could be tracta-
ble. The first idea is to form n0 groups of N consecutive spins and try to
compute the probability to observe a certain coarse-grained energy profile
(E1, . . . ,En0) when N is large. But this idea does not take into account the
great intrinsic inhomogeneity of the dissipative systems: if the typical energy
of the N first spins is O(log N), the typical energy of the spins from indices
N to 2N is only O(1), which prevents to give a satisfactory description in
terms of ldf. The second idea is to rectify by hand this inhomogeneity, con-
sidering for instance variables like

∑
i iei . But it is easy to show that they do

not obey a large deviation theorem in the large N limit. Actually the only
way to construct a ldf capable of describing more precisely the energy fluc-
tuations is to consider unequal blocks of spins: the first group gather spins
σ0 to σN−1, the second spins from σN to σN2−1, . . . , the last, spins from
σ

Nn0−1 to σNn0−1. We are going to show that this inhomogeneous grouping
of spins allows a relevant description in terms of ldf.

For the sake of simplicity, we come back to the Ising model, but the
generalization of the preceding paragraph could be processed along similar
simple lines. As well, we forget for a moment the particular way to group
the spins together and consider something more general:

H(�)=
〈

exp

(
−

M−1∑

i=0

µi(1−σiσi+1)

)〉
(99)

H is a characteristic function for M spins where µ is replaced by an arbi-
trary “field” �. A multidimensional Laplace inversion performed over �

would give the probability of the energy density field.
A similar procedure as for G leads to

H(�)=1+
∑

i

τipI +
∑

i<j

τiτjpI,J +· · · (100)

≡1+T1 +T2 +· · · (101)

with τj = (e−2µj − 1)/2. The resummation procedure is more complicated
than for G. Let us define �j = τj−1 − τj . The expansion of T2 using the
recursion relation (A.1) leads to

T2 =
∑

i<j

τi∆jpI and i+1,j +
∑

i<j

τiτjpI and i+1,j,j+1 (102)
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Symbolically, the “τ” term of T1 is transformed to a “τ∆ + ττ” term at
the next step. A lengthy computation shows that

T3 =
∑

i<j<k

τi∆j∆kpI and i+1,j,k +
∑

i<j<k

τi∆j τkpI and i+1,j,k,k+1

+
∑

i<k

τiτ
2
k pI and i+1,k,k+1 +

∑

i<j<k

τiτj∆kpI and i+1,j,j+1,k

+
∑

i<j<k

τiτj τkpI and i+1,j,j+1,k,k+1 (103)

= ′′τ̃ ∆̃∆̃+ τ̃ ∆̃τ̃ + τ̃ τ̃2 + τ̃ τ̃ ∆̃+ τ̃ τ̃ τ̃ ′′ (104)

where the last line is a symbolic rewriting of T3. Besides, the computa-
tion shows that (. . . )∆̃ is transformed into (. . . )(∆̃∆̃+ ∆̃τ̃ + τ̃2). Thus, as
for G, these simple rules allow us to generate any order, which are rapidly
increasing in complexity:

T3 = τ̃ ∆̃τ̃ + τ̃ ∆̃∆̃+ τ̃ τ̃2 + τ̃ τ̃ ∆̃+ τ̃ τ̃ τ̃ (105)

⇒T4 = τ̃ ∆̃τ̃ ∆̃+ τ̃ ∆̃τ̃ τ̃ + τ̃ ∆̃∆̃∆̃+ τ̃ ∆̃∆̃τ̃ + τ̃ ∆̃τ̃2

+ τ̃ τ̃2∆̃+ τ̃ τ̃2τ̃ + τ̃ τ̃ ∆̃τ̃ + τ̃ τ̃ ∆̃∆̃+ τ̃ τ̃ τ̃2 + τ̃ τ̃ τ̃ ∆̃+ τ̃ τ̃ τ̃ τ̃ (106)

These terms can be grouped into four categories: there are terms (called
“un” in the following) without any ∆̃, terms with a single and terminal
∆̃ (called “vn”), terms like τ̃ ∆̃∆̃τ̃ with multiple internals ∆̃ but not end-
ing with a ∆̃ (called “wn”), and terms with multiple ∆̃ ending with a ∆̃

(called “zn”). Recursions relations exist between these fours sequences: one
has for u and v:

u1 = τ̃ , u2 = τ̃ τ̃ , un+1 =unτ̃ +un−1τ̃2 (107)

v1 =0, vn+1 =un∆̃ (108)

Let us recall that

• the elements τ̃ , τ̃2 and ∆̃ of the symbolic algebra do not commute.

• the element τ̃2 is not equivalent to τ̃ τ̃
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Formally, one can sum up the un and vn terms:

U ≡
∞∑

n=1

un = τ̃ (1− τ̃ − τ̃2)
−1 (109)

V ≡
∞∑

n=1

vn = τ̃ (1− τ̃ − τ̃2)
−1∆̃ (110)

The w and z terms obey also recursion relations:

wn+1 =vnτ̃ + znτ̃ +wnτ̃ + zn �∆̃τ̃2 (111)

zn+1 = (wn + zn +vn)∆̃ (112)

where zn �∆̃ means “zn without its final ∆̃”. Defining W =∑n�3 wn and
Z =∑n�3 zn, a simple computation gives

H(�)=1+U +V +W +Z (113)

=1+ τ̃
(
1− τ̃ − τ̃2 − ∆̃

)−1 (114)

This simple formal result hides a real complexity: let us recall that for
instance

τ̃ ∆̃τ̃2∆̃=
∑

i<j<k<	

τi∆j τ
2
k ∆	ci,i+1,j,k,k+1,	 (115)

A useful rewriting of H is

H(�)=1+ τ̃

∞∑

p=0

[
(1− τ̃ − τ̃2)

−1∆̃
]p

(1− τ̃ − τ̃2)
−1 (116)

5.1. Recovering G

If all the µj are constant, this sum is considerably simplified: in fact,
all ∆j but ∆N = τ are zero, and τ̃2 = τ τ̃ such that

H(µ)=1+ τ̃ (1− τ̃ − τ̃2)
−1 + τ̃ (1− τ̃ − τ̃2)

−1∆̃ (117)

=1+ τ

∞∑

p=0

(τ + τ 2)pC(p+1) + τ 2
∞∑

p=0

(τ + τ 2)pC
(p+1)
N =G(µ) (118)

G(µ) is recovered.
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5.2. Two Groups of Spins

Let us now consider a situation with two clusters of µj : µj =µ if j ∈
[0,N −1] and µj =µ′ if j ∈ [N,N2 −1]. In that case, two ∆j only are non-
zero (∆N = τ − τ ′ and ∆N2 = τ ′) and H is expressed as

H(µ,µ′)=1+ τ̃ (1− τ̃ − τ̃2)
−1 + τ̃ (1− τ̃ − τ̃2)

−1∆̃(1− τ̃ − τ̃2)
−1

+ τ̃ (1− τ̃ − τ̃2)
−1∆̃(1− τ̃ − τ̃2)

−1∆̃ (119)

We can write H(µ,µ′) as H(µ,µ′)=H(0,µ′)+∆H . It is easy to see that
H(0,µ′) (resp. ∆H ) is made with all terms where the first τi of the sums
is τ ′ (resp. τ ). Defining

H̃ (µ,µ′)≡1+ (τ̃ + τ̃2)(1− τ̃ − τ̃2)
−1 + (τ̃ + τ̃2)(1− τ̃ − τ̃2)

−1∆̃(1− τ̃ − τ̃2)
−1

+ (τ̃ + τ̃2)(1− τ̃ − τ̃2)
−1∆̃(1− τ̃ − τ̃2)

−1∆̃ (120)

we get

H̃ =1+ (1+ τ)∆H + (1+ τ ′)[H(0,µ′)−1] (121)

=−τ ′ + (1+ τ)H + (τ ′ − τ)H(0,µ′) (122)

H̃ is interesting for it is easier to compute than H ; the last expression
shows that once H̃ is computed, so is H , since H(0,µ′) can be estimated
along lines similar to those we followed for G.

Let us define ξ = τ + τ 2 and ξ ′ = τ ′ + τ ′2. Similarly ξ̃ (resp. ξ̃ ′) is
the operator τ̃ + τ̃2 applied on indices less (resp. greater) than N . As an
example,

ξ̃2ξ̃ ′ = ξ2ξ ′ ∑

0�i1<i2<N�j1

ci1i1+1,i2,i2+1,j1,j1+1 (123)

Similarly ∆̃N and ∆̃N2 term the ∆̃ operator where the index of application
is precised. We have

H̃ (µ,µ′)=1+
∑

p+q>0

ξ̃ pξ̃ ′q +
∑

p�1,q�0

ξ̃ p∆̃N ξ̃ ′q +
∑

p+q>0

ξ̃ pξ̃ ′q∆̃N2

+
∑

p�1,q�0

ξ̃ p∆̃N ξ̃ ′q∆̃N2 (124)

Terms with a single ∆̃ can be further simplified using (79):
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ξ̃ p∆̃N ξ̃ ′q = ξpξ ′q∆N

[
−C(p),N,(q−1),N2 +C(p),(q) −C(p−1),N,(q) +C1,(p−2),N,(q)

]

ξ̃ pξ̃ ′q∆̃N2 = ξpξ ′q∆N2

[
C(p),(q) −C(p),N,(q−1),N2 +C(p−1),N,(q),N2 (125)

−C(p−1),(q),N2 +C1,(p−2),(q),N2

]
(126)

The definition of the symbols C... is generalized from (81); C(p),(q) deserves
however a precision: it holds for a summation over 0 � i1 < · · ·<ip <N �
j1 < · · ·<jq <N2 (instead of · · ·<N <j1 < · · · ). After a computation, we
get

H̃ (µ,µ′)= (1+ τ)2

1+ ξ

∑

p+q>0

(
ξ̃ pξ̃ ′q + ξ̃ p∆̃N ξ̃ ′q∆̃N2

)

+ ξ2

1+ ξ

∑

p+q�0

ξpξ ′q [∆NC1,(p),N,(q) +∆N2C1,(p),(q),N2 ]

−∆N

∑

q�1

ξ̃ ′q + τ ′∑

q�1

∆̃N ξ̃ ′q∆̃N2 +boundary terms (127)

whence

H(0,µ′)= H̃ (0,µ′)/(1+ τ ′)=
∑

q>0

(
ξ̃ ′q − τ̃ ′ξ̃ ′q∆̃N2

)
+b.t. (128)

and finally

H(µ,µ′)= 1+ τ

1+ ξ

∑

p+q>0

(
ξ̃ pξ̃ ′q + ξ̃ p∆̃N ξ̃ ′q∆̃N2

)

+ τξ

1+ ξ

∑

p+q�0

ξpξ ′q [∆NC1,(p),N,(q) +∆N2C1,(p),(q),N2 ]+b.t.

(129)

When τ =τ ′, the formula for G is again recovered. It is interesting to note
that H has here again a Pfaffian structure: if B is the skew-symmetric
N2 ×N2 matrix where all elements but bi,i+1 =−τi(τi + 1), b1,N =−τ 2∆N ,
b1,N2 =−τ 2∆N2 , bN,N2 =−∆N∆N2 are zero, then

H(µ,µ′)= 1+ τ

1+ τ + τ 2

√
det(1+BC)+b.t. (130)
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By induction from the preceding case, we assume that the ldf can be com-
puted as if ∆N =∆N2 =0. In that case, we get

log H �−1
2

∞∑

p=1

(
− 8

π

)p 1
p

Bp (131)

where Bp is a trace term (we omit the p summation symbols):

B1 � ξi1

1
2i1

(132)

Bp � ξi1 · · · ξip

i1i2 · · · ip
(i2

1 + i2
2 )(i2

2 + i2
3 ) · · · (i2

p + i2
1 )

(133)

5.3. General Case

For the general case, where n0 groups of spins are considered instead
of two, the generalization is quite immediate and similar conclusions hold,
that is, H is proportional to a Pfaffian (up to boundary terms) whose leading
term is unchanged if off-second-diagonal terms are replaced by zero.

As for the computation of G, there are two different ways to compute the
leading term of Bp. For the inhomogeneous case, it is convenient to write

Bp �
N→∞

p

Nn0−1∑

ip=0

ξip

ip∑

i1,i2,...,ip−1=1

ξi1 ···ξip−1

× (i1/ip)(i2/ip)···(ip−1/ip)i
p
p

([i1/ip]2 + [i2/ip]2)([i2/ip]2 + [i3/ip]2)···(1+ [i1/ip]2)i2p
p

(134)

� p

Nn0−1∑

ip=0

ξip

ip

∫ 1

0
dx1

×
∫ 1

0
dx2 ···

∫ 1

0
dxp−1 ξipx1 ···ξipxp−1

x1x2 ···xp−1

(x2
1 +x2

2 )···(x2
p−1 +1)(1+x2

1 )

(135)

Let us recall that we consider a particular profile where µi (i.e. ξi) is con-
stant in each interval [0,N − 1], [N,N2 − 1], . . . , [Nn0−1,
Nn0 −1], that is ξi =ξ(E[log(i)/ log(N)]). Thus, ξipx1 =ξ(E[log(ip)/ log(N)+
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log(x1)/ log(N)]) and ξipx1 =ξip except for x1 of order 1/N . As a result, in
this case,

Bp �p

Nn−1∑

ip=0

ξ
p
ip

ip

∫ 1

0
dx1

∫ 1

0
dx2 · · ·

∫ 1

0
dxp−1

x1x2 · · ·xp−1

(x2
1 +x2

2 ) · · · (x2
p−1 +1)(1+x2

1 )

(136)

∼p(log N)(ξ(0)p + ξ(1)p +· · ·+ ξ(n−1)p)

∫ 1

0
dx1

∫ 1

0
dx2 · · ·

∫ 1

0
dxp−1

× x1x2 · · ·xp−1

(x2
1 +x2

2 ) · · · (x2
p−1 +1)(1+x2

1 )
(137)

Thus, the coupling vanishes at the level of the ldf, and we have (the vector
µµµ= (µ(1), . . . ,µ(n0)) holds here for the n0 different values of µ for the n0
groups of spins)

g(�)=
n0∑

i=1



1
8

− 2
π2

[
Arccos

(
e−2µ(i)

√
2

)]2


 (138)

Thus, it appears that the successive groups of spins are decorrelated at
the level of the ldf. This decoupling shows that the situation is here com-
pletely different from those arising in conservative systems, and sheds
light on the intimate relation between the conservative character of an
observable and the appearance of severe correlations in a NESS. Here
any fluctuation arising somewhere in the system affects only margin-
ally its vicinity, for this fluctuation is mainly locally destroyed by the
dissipation.

6. CONCLUSION AND PERSPECTIVES

We exhibited an example of dissipative system in a stationary state
where a global variable (the cumulative energy E) obeys a large deviation
theorem; moreover its ldf f (x) appeared to be independent of the injection
mechanism. This particular “boundary layer” structure made the exact
computation of f tractable, and we were also able to compute the ldf
associated with the probability of a particular energy profile. Due to
strong inhomogeneities in the stationary state, such a profile must be
defined in a nonstandard way, and there is only one coherent way to do
this. We proved also that the stationary state do not exhibit correlations as
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conservative systems do when pulled out of equilibrium, for the bulk dis-
sipation prevents the fluctuations to be transported unchanged from one
place to another. Incidentally, it is interesting to mention the ref. 11, where
the authors come to quite different conclusions: they study the equilib-
rium properties of a system driven by Kawasaki+Glauber dynamics and
show that long range correlations do exist, although the system be in equi-
librium; they conjecture thus that “correlations are more likely to be a
generic feature of non reversible dynamics”. In our case however, where
internal dynamics are also non reversible, correlations are not induced.
Maybe the dynamical details play an important role, and nonlocal dynam-
ics like Kawasaki’s could impose correlations at the large deviation level.

A natural extension of this work is to add a systematic drift to the
system and test if it would be able to rebuild correlations; besides, if we
interpret it as a convection phenomenon in a realistic system, the study of
such a competition (and balance) between the dissipation and the trans-
port in the structuration of the fluctuations could give interesting insights
toward the characterization of dissipative NESS.

But some care must be taken in doing a modification of internal
dynamics of a dissipative system: actually, it is quite easy to destroy the large
deviation “structure” of the energy profile. In fact, the appearance of strong
correlations in a stationary state seems to be slightly antithetical with a
large deviation theorem, since the latter is mathematically expressed for a
sum of N independent random variables; if we know that as a rule weak
correlations do not prevent a large deviation theorem to hold, it is obvious
that strongly correlated systems have no reason to verify this theorem
anymore. In this respect, the results of ref. 1 seem at first sight paradoxical,
since strong correlations are present in their systems; but actually, if their
correlations are strong in the sense they “connect” arbitrary distant places
in the system, they are nevertheless weak as regards their intensity, since
they are inversely proportional to the number of particles.

APPENDIX A

The central point of this model is that probabilities c..., whatever the
event symbolised by the . . . , can be expressed in terms of the ci,j only. To
see this, let us consider the recursion relation ci,j verifies:

ci,j = 1
4

(
ci+1,j + ci−1,j + ci,j+1 + ci,j−1

)
if i <j (A.1)

c0,j =1 ∀ j �0 (A.2)

ci,i =0 ∀ i �1 (A.3)
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The Eq. (A.1) comes from an explicitation of the next move of the walk-
ers: there are 4 equiprobable moves and for instance Prob[(i, j)| next move
is (i → i +1)]=ci+1,j . The boundary conditions (A.3) ensure that this rela-
tion is valid even if i + 1 = j . Similarly the b.c. (A.2) plays the same role
for the event i → i −1 when i =1.

Very similar relations can be written for any ci,j,k,··· (the r.h.s of the
recursion relation has six terms for ci,j,k, eight terms for ci,j,k,	, etc . . . ).
It is then just a matter of calculation to verify that the solution of the
recursion relation for ci,j,k and ci,j,k,	 are

ci,j,k = ci,j + cj,k − ci,k (A.4)

ci,j,k,	 = ci,j ck,	 + ci,	cj,k − ci,kcj,	 (A.5)

These relations can be generalized to higher orders:

ci1,i2,... ,i2n+1 = ci1,... ,i2n
− ci1,... ,i2n−1,i2n+1 +· · ·+ ci2,... ,i2n+1 (A.6)

ci1,i2,... ,i2n
= 1

2nn!

∑

σ∈S2n

ε(σ )ciσ1 iσ2
ciσ3 iσ4

. . . ciσ2n−1 iσ2n
(A.7)

In the last expression, S2n is the set of permutations of {1,2, . . . ,2n} and
the ci,j are antisymmetrised: cj,i ≡−ci,j if j > i. The formula (A.7) show
that the ci1,... ,i2n

are Pfaffians associated with the antisymmetric matrix
C = (ci,j ): as demonstrated in ref. 8, if A is the N ×N matrix

A(η, ξ)=η





0 1 0 0 ξ

−1 0 1 0 0
0 −1 0 1 0

. 0 .

0 . 1
−ξ 0 −1 0




(A.8)

We have the relation

det (Id+AC)=


1−η
∑

i

ci,i+1 +η2
∑

i<j

ci,i+1,j,j+1 −· · ·

−ξ

{
ηc1,N −η2

∑

i

c1,i,i+1,N +· · ·
}]2

(A.9)

=
[
1−ηC(1) +η2C(2) −· · ·− ξ

{
ηC1(0)N −η2C1(1)N +· · ·

}]2

(A.10)
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